CFP last date
29 September 2025
Call for Paper
October Edition
IJAIS solicits high quality original research papers for the upcoming October edition of the journal. The last date of research paper submission is 29 September 2025

Submit your paper
Know more
Random Articles
Reseach Article

Analyzing and Predicting Anaemia with Advanced Machine Learning Techniques with Comparative Analysis

by Sandeep Kumar Chundru, Mukund Sai Vikram Tyagadurgam, Venkataswamy Naidu Gangineni, Sriram Pabbineedi, Ajay Babu Kakani, Sri Krishna Kireeti Nandiraju
International Journal of Applied Information Systems
Foundation of Computer Science (FCS), NY, USA
Volume 13 - Number 1
Year of Publication: 2025
Authors: Sandeep Kumar Chundru, Mukund Sai Vikram Tyagadurgam, Venkataswamy Naidu Gangineni, Sriram Pabbineedi, Ajay Babu Kakani, Sri Krishna Kireeti Nandiraju
10.5120/ijais2025452027

Sandeep Kumar Chundru, Mukund Sai Vikram Tyagadurgam, Venkataswamy Naidu Gangineni, Sriram Pabbineedi, Ajay Babu Kakani, Sri Krishna Kireeti Nandiraju . Analyzing and Predicting Anaemia with Advanced Machine Learning Techniques with Comparative Analysis. International Journal of Applied Information Systems. 13, 1 ( Aug 2025), 28-36. DOI=10.5120/ijais2025452027

@article{ 10.5120/ijais2025452027,
author = { Sandeep Kumar Chundru, Mukund Sai Vikram Tyagadurgam, Venkataswamy Naidu Gangineni, Sriram Pabbineedi, Ajay Babu Kakani, Sri Krishna Kireeti Nandiraju },
title = { Analyzing and Predicting Anaemia with Advanced Machine Learning Techniques with Comparative Analysis },
journal = { International Journal of Applied Information Systems },
issue_date = { Aug 2025 },
volume = { 13 },
number = { 1 },
month = { Aug },
year = { 2025 },
issn = { 2249-0868 },
pages = { 28-36 },
numpages = {9},
url = { https://www.ijais.org/archives/volume13/number1/analyzing-and-predicting-anaemia-with-advanced-machine-learning-techniques-with-comparative-analysis/ },
doi = { 10.5120/ijais2025452027 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2025-08-29T00:23:15.253355+05:30
%A Sandeep Kumar Chundru
%A Mukund Sai Vikram Tyagadurgam
%A Venkataswamy Naidu Gangineni
%A Sriram Pabbineedi
%A Ajay Babu Kakani
%A Sri Krishna Kireeti Nandiraju
%T Analyzing and Predicting Anaemia with Advanced Machine Learning Techniques with Comparative Analysis
%J International Journal of Applied Information Systems
%@ 2249-0868
%V 13
%N 1
%P 28-36
%D 2025
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The rising prevalence of anaemia poses significant health challenges globally, necessitating accurate and timely diagnostic methods. This work applies the AdaBoost classification model to a Complete Blood Count (CBC) dataset to provide a reliable machine learning method for anaemia prediction. The methodology used consists of extensive pre-processing including data cleaning, one-hot encoding, z score normalization and automated feature selection to preserve the data's integrity and make the model simpler. The experimental results proved that the presented AdaBoost model achieved a promising accuracy of 92.7%, good precision of 84%, fair recall of 94% and good F1 value of 88.7%, indicating effectively well-balanced classification performance. Further, ROC curve analysis, with AUC of 0.94, confirms superior discriminatory capability. It compared their results to existing models, LogitBoost and Random Forest (RF); LogitBoost yields an accuracy slightly low at 89.3% and RF at 67.1%. The results highlight the capabilities of the AdaBoost model for early, accurate anaemia detection, providing substantial improvements over conventional diagnostic measures and improving clinical decision making in real time healthcare applications.

References
  1. Santorelli, A., Abbasi, B., Lyons, M., Hayat, A., Gupta, S., O’Halloran, M., & Gupta, A. (2018). Investigation of Anemia and the Dielectric Properties of Human Blood at Microwave Frequencies. IEEE Access, 6, 56885–56892. https://doi.org/10.1109/ACCESS.2018.2873447
  2. Kolluri, V. (2016b). Machine Learning in Managing Healthcare Supply Chains: How Machine Learning Optimizes Supply Chains, Ensuring the Timely Availability of Medical Supplies. Journal of Emerging Technologies and Innovative Research, 3(6).
  3. Garg, S. (2019a). AI/ML Driven Proactive Performance Monitoring, Resource Allocation and Effective Cost Management in SAAS Operations. International Journal of Core Engineering & Management, 6(6), 263–273.
  4. Kolluri, V. (2015). A Comprehensive Analysis on Explainable and Ethical Machine: Demystifying Advances in Artificial Intelligence. TIJER - International Research Journals (TIJER), 2(7).
  5. Garg, S. (2019b). Predictive Analytics and Auto Remediation using Artificial Inteligence and Machine learning in Cloud Computing Operations. International Journal of Innovative Research in Engineering & Multidisciplinary Physical Sciences, 7(2).
  6. Mutter, S., Casey, A. E., Zhen, S., Shi, Z., & Mäkinen, V. P. (2017). Multivariable Analysis of Nutritional and Socio-Economic Profiles Shows Differences in Incident Anemia for Northern and Southern Jiangsu in China. Nutrients, 9(10). https://doi.org/10.3390/nu9101153
  7. Kolluri, V. (2016a). An Innovative Study Exploring Revolutionizing Healthcare with AI: Personalized Medicine: Predictive Diagnostic Techniques and Individualized Treatment. International Journal of Emerging Technologies and Innovative Research, 3(11), 2349–5162.
  8. Bregman, D. B., Morris, D., Koch, T. A., He, A., & Goodnough, L. T. (2013). Hepcidin Levels Predict Nonresponsiveness to Oral Iron Therapy in Patients with Iron Deficiency Anemia. American Journal of Hematology, 88(2), 97–101. https://doi.org/10.1002/ajh.23354
  9. Balasubramanian, A. (2019). Intelligent Health Monitoring: Leveraging Machine Learning and Wearables for Chronic Disease Management and Prevention. International Journal of Innovative Research in Engineering & Multidisciplinary Physical Sciences, 7(6), 1–13.
  10. Esteban-Medina, M., Peña-Chilet, M., Loucera, C., & Dopazo, J. (2019). Exploring the druggable space around the Fanconi anemia pathway using machine learning and mechanistic models. BMC Bioinformatics, 20(1), 1–15. https://doi.org/10.1186/s12859-019-2969-0
  11. Hortinela, C. C., Balbin, J. R., Fausto, J. C., Daniel C. Divina, P., & Felices, J. P. T. (2019). Identification of Abnormal Red Blood Cells and Diagnosing Specific Types of Anemia Using Image Processing and Support Vector Machine. 2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management ( HNICEM ), 1–6. https://doi.org/10.1109/HNICEM48295.2019.9072904
  12. Hafeel, A., Fernando, H. S. M. H., Pravienth, M., Lokuliyana, S., Kayanthan, N., & Jayakody, A. (2019). IoT Device to Detect Anemia: A Non-Invasive Approach with Multiple Inputs. 2019 International Conference on Advancements in Computing (ICAC), 392–397. https://doi.org/10.1109/ICAC49085.2019.9103391
  13. Gebreweld, A., & Tsegaye, A. (2018). Prevalence and Factors Associated with Anemia among Pregnant Women Attending Antenatal Clinic at St. Paul’s Hospital Millennium Medical College, Addis Ababa, Ethiopia. Advances in Hematology, 2018. https://doi.org/10.1155/2018/3942301
  14. Roychowdhury, S., Sun, D., Bihis, M., Ren, J., Hage, P., & Rahman, H. H. (2017). Computer Aided Detection of Anemia-Like Pallor. 2017 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), 461–464. https://doi.org/10.1109/BHI.2017.7897305
  15. Hennek, J. W., Kumar, A. A., Wiltschko, A. B., Patton, M. R., Lee, S. Y. R., Brugnara, C., Adams, R. P., & Whitesides, G. M. (2016). Diagnosis of Iron Deficiency Anemia Using Density-Based Fractionation of Red Blood Cells. Lab on a Chip, 16(20), 3929–3939. https://doi.org/10.1039/C6LC00875E
  16. Punter-Villagrasa, J., Cid, J., Páez-Avilés, C., Rodríguez-Villarreal, I., Juanola-Feliu, E., Colomer-Farrarons, J., & Miribel-Català, P. (2015). An Instantaneous Low-Cost Point-of-Care Anemia Detection Device. Sensors, 15(2), 4564–4577. https://doi.org/10.3390/s150204564
  17. Niu, B., Ren, J., & Li, X. (2019). Credit Scoring Using Machine Learning by Combing Social Network Information: Evidence from Peer-to-Peer Lending. Information, 10(12). https://doi.org/10.3390/info10120397
  18. Cao, Y., Miao, Q.-G., Liu, J.-C., & Gao, L. (2013). Advance and Prospects of AdaBoost Algorithm. Acta Automatica Sinica, 39(6), 745–758. https://doi.org/10.1016/S1874-1029(13)60052-X
  19. Dimauro, G., Guarini, A., Caivano, D., Girardi, F., Pasciolla, C., & Iacobazzi, A. (2019). Detecting Clinical Signs of Anaemia From Digital Images of the Palpebral Conjunctiva. IEEE Access, 7, 113488–113498. https://doi.org/10.1109/ACCESS.2019.2932274
  20. Anand, P., Gupta, R., & Sharma, A. (2019). Prediction of Anaemia among children using Machine Learning Algorithms. International Journal of Electronics Engineering, 11(2), 469–480.
  21. Kalla, D., Smith, N., & Samaah, F. (2023). Satellite Image Processing Using Azure Databricks and Residual Neural Network. International Journal of Advanced Trends in Computer Applications, 9(2), 48-55.
  22. Kuraku, D. S., & Kalla, D. (2023). Phishing Website URL’s Detection Using NLP and Machine Learning Techniques. Journal on Artificial Intelligence-Tech Science.
  23. Varadharajan, V., Smith, N., Kalla, D., Samaah, F., Polimetla, K., & Kumar, G. R. (2024). Stock Closing Price and Trend Prediction with LSTM-RNN. Journal of Artificial Intelligence and Big Data, 4, 877.
  24. Kalla, D., Kuraku, D. S., & Samaah, F. (2021). Enhancing cyber security by predicting malwares using supervised machine learning models. International Journal of Computing and Artificial Intelligence, 2(2), 55-62.
  25. Kuraku, D. S., Kalla, D., Smith, N., & Samaah, F. (2023). Safeguarding FinTech: elevating employee cybersecurity awareness in financial sector. International Journal of Applied Information Systems (IJAIS), 12(42).
  26. Kalla, D., Smith, N., Samaah, F., & Polimetla, K. (2022). Enhancing Early Diagnosis: Machine Learning Applications in Diabetes Prediction. Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-205. DOI: doi. org/10.47363/JAICC/2022 (1), 191, 2-7.
  27. Kuraku, S., Kalla, D., Samaah, F., & Smith, N. (2023). Cultivating proactive cybersecurity culture among IT professional to combat evolving threats. International Journal of Electrical, Electronics and Computers, 8(6).
  28. Kalla, D., Smith, N., Samaah, F., & Polimetla, K. (2024). Hybrid Scalable Researcher Recommendation System Using Azure Data Lake Analytics. Journal of Data Analysis and Information Processing, 12, 76-88.
  29. Kuraku, D. S., & Kalla, D. (2023). Impact of phishing on users with different online browsing hours and spending habits. International Journal of Advanced Research in Computer and Communication Engineering, 12(10).
  30. Kalla, D., & Kuraku, S. (2023). Phishing website url’s detection using nlp and machine learning techniques. Journal of Artificial Intelligence, 5, 145.
  31. Kuraku, D. S., Kalla, D., & Samaah, F. (2022). Navigating the link between internet user attitudes and cybersecurity awareness in the era of phishing challenges. International Advanced Research Journal in Science, Engineering and Technology, 9(12).
  32. Kuraku, D. S., Kalla, D., Smith, N., & Samaah, F. (2023). Exploring How User Behavior Shapes Cybersecurity Awareness in the Face of Phishing Attacks. International Journal of Computer Trends and Technology.
  33. Sreeramulu, M. D., Mohammed, A. S., Kalla, D., Boddapati, N., & Natarajan, Y. (2024, September). AI-driven Dynamic Workload Balancing for Real-time Applications on Cloud Infrastructure. In 2024 7th International Conference on Contemporary Computing and Informatics (IC3I) (Vol. 7, pp. 1660-1665). IEEE.
  34. Kalla, D., Mohammed, A. S., Boddapati, V. N., Jiwani, N., & Kiruthiga, T. (2024, November). Investigating the Impact of Heuristic Algorithms on Cyberthreat Detection. In 2024 2nd International Conference on Advances in Computation, Communication and Information Technology (ICAICCIT) (Vol. 1, pp. 450-455). IEEE.
  35. Chandrasekaran, A., & Kalla, D. (2023). Heart disease prediction using chi-square test and linear regression. Computer Science & Information Technology, 13, 135-146.
  36. Chinta, P. C. R., Katnapally, N., Ja, K., Bodepudi, V., Babu, S., & Boppana, M. S. (2022). Exploring the role of neural networks in big data-driven ERP systems for proactive cybersecurity management. Kurdish Studies.
  37. Routhu, K., Bodepudi, V., Jha, K. M., & Chinta, P. C. R. (2020). A Deep Learning Architectures for Enhancing Cyber Security Protocols in Big Data Integrated ERP Systems. Available at SSRN 5102662.
  38. Moore, C. (2023). AI-powered big data and ERP systems for autonomous detection of cybersecurity vulnerabilities. Nanotechnology Perceptions, 19, 46-64.
  39. Bodepudi, V., & Chinta, P. C. R. (2024). Enhancing Financial Predictions Based on Bitcoin Prices using Big Data and Deep Learning Approach. Available at SSRN 5112132.
  40. Chinta, P. C. R. (2023). The Art of Business Analysis in Information Management Projects: Best Practices and Insights.
  41. Boppana, S. B., Moore, C. S., Bodepudi, V., Jha, K. M., Maka, S. R., & Sadaram, G. AI And ML Applications In Big Data Analytics: Transforming ERP Security Models For Modern Enterprises.
  42. Katnapally, N., Chinta, P. C. R., Routhu, K. K., Velaga, V., Bodepudi, V., & Karaka, L. M. (2021). Leveraging Big Data Analytics and Machine Learning Techniques for Sentiment Analysis of Amazon Product Reviews in Business Insights. American Journal of Computing and Engineering, 4(2), 35-51.
  43. Chinta, P. C. R., Moore, C. S., Karaka, L. M., Sakuru, M., Bodepudi, V., & Maka, S. R. (2025). Building an Intelligent Phishing Email Detection System Using Machine Learning and Feature Engineering. European Journal of Applied Science, Engineering and Technology, 3(2), 41-54.
  44. Moore, C. (2024). Enhancing Network Security With Artificial Intelligence Based Traffic Anomaly Detection In Big Data Systems. Available at SSRN 5103209.
  45. Chinta, P. C. R., Moore, C. S., Karaka, L. M., Sakuru, M., & Bodepudi, V. (2025). Predictive Analytics for Disease Diagnosis: A Study on Healthcare Data with Machine Learning Algorithms and Big Data. J Cancer Sci, 10(1), 1.
  46. KishanKumar Routhu, A. D. P. Risk Management in Enterprise Merger and Acquisition (M&A): A Review of Approaches and Best Practices.
  47. Bodepudi, V. (2023). Understanding the Fundamentals of Digital Transformation in Financial Services: Drivers and Strategic Insights. Journal of Artificial Intelligence and Big Data, 3(1), 10-31586.
  48. Chinta, P. C. R. (2022). Enhancing Supply Chain Efficiency and Performance Through ERP Optimisation Strategies. Journal of Artificial Intelligence & Cloud Computing, 1(4), 10-47363.
  49. Krishna Madhav, J., Varun, B., Niharika, K., Srinivasa Rao, M., & Laxmana Murthy, K. (2023). Optimising Sales Forecasts in ERP Systems Using Machine Learning and Predictive Analytics. J Contemp Edu Theo Artific Intel: JCETAI-104.
  50. Jha, K. M., Velaga, V., Routhu, K., Sadaram, G., Boppana, S. B., & Katnapally, N. (2025). Transforming Supply Chain Performance Based on Electronic Data Interchange (EDI) Integration: A Detailed Analysis. European Journal of Applied Science, Engineering and Technology, 3(2), 25-40.
  51. Sadaram, G., Sakuru, M., Karaka, L. M., Reddy, M. S., Bodepudi, V., Boppana, S. B., & Maka, S. R. (2022). Internet of Things (IoT) Cybersecurity Enhancement through Artificial Intelligence: A Study on Intrusion Detection Systems. Universal Library of Engineering Technology, (2022).
  52. Maka, S. R. (2023). Understanding the Fundamentals of Digital Transformation in Financial Services: Drivers and Strategic Insights. Available at SSRN 5116707.
Index Terms

Computer Science
Information Sciences

Keywords

Anaemia Detection AdaBoost CBC Dataset Diagnostic Accuracy Predictive Analytics Health Informatics