CFP last date
29 September 2025
Call for Paper
October Edition
IJAIS solicits high quality original research papers for the upcoming October edition of the journal. The last date of research paper submission is 29 September 2025

Submit your paper
Know more
Random Articles
Reseach Article

Data-Driven Detection of Network Threats using Advanced Machine Learning Techniques for Cybersecurity

by Bhavana Kamarthapu, Mitra Penmetsa, Jayakeshav Reddy Bhumireddy, Rajiv Chalasani, Srikanth Reddy Vangala, Ram Mohan Polam
International Journal of Applied Information Systems
Foundation of Computer Science (FCS), NY, USA
Volume 13 - Number 1
Year of Publication: 2025
Authors: Bhavana Kamarthapu, Mitra Penmetsa, Jayakeshav Reddy Bhumireddy, Rajiv Chalasani, Srikanth Reddy Vangala, Ram Mohan Polam
10.5120/ijais2025452028

Bhavana Kamarthapu, Mitra Penmetsa, Jayakeshav Reddy Bhumireddy, Rajiv Chalasani, Srikanth Reddy Vangala, Ram Mohan Polam . Data-Driven Detection of Network Threats using Advanced Machine Learning Techniques for Cybersecurity. International Journal of Applied Information Systems. 13, 1 ( Aug 2025), 37-44. DOI=10.5120/ijais2025452028

@article{ 10.5120/ijais2025452028,
author = { Bhavana Kamarthapu, Mitra Penmetsa, Jayakeshav Reddy Bhumireddy, Rajiv Chalasani, Srikanth Reddy Vangala, Ram Mohan Polam },
title = { Data-Driven Detection of Network Threats using Advanced Machine Learning Techniques for Cybersecurity },
journal = { International Journal of Applied Information Systems },
issue_date = { Aug 2025 },
volume = { 13 },
number = { 1 },
month = { Aug },
year = { 2025 },
issn = { 2249-0868 },
pages = { 37-44 },
numpages = {9},
url = { https://www.ijais.org/archives/volume13/number1/data-driven-detection-of-network-threats-using-advanced-machine-learning-techniques-for-cybersecurity/ },
doi = { 10.5120/ijais2025452028 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2025-08-29T00:23:15.272775+05:30
%A Bhavana Kamarthapu
%A Mitra Penmetsa
%A Jayakeshav Reddy Bhumireddy
%A Rajiv Chalasani
%A Srikanth Reddy Vangala
%A Ram Mohan Polam
%T Data-Driven Detection of Network Threats using Advanced Machine Learning Techniques for Cybersecurity
%J International Journal of Applied Information Systems
%@ 2249-0868
%V 13
%N 1
%P 37-44
%D 2025
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The more sophisticated and diverse the network threats become, the lower the conventional intrusion detection systems' precision and versatility. This work provides a Data Driven Intrusion Detection System (IDS) based on Artificial Neural Networks (ANN) in combination with Principal Component Analysis (PCA) to improve features and minimize dimensionality. A significant amount of preprocessing is performed on the proposed model including missing value handling, normalization and removal of outliers for quality data. The ANN model outperformed the benchmark models Random Forest and Isolation Forest, with 97.5% detection accuracy, 99.0% precision, 96.7% recall, and 95.7% F1-score on the NSL-KDD dataset. These findings also demonstrate that the ANN-based IDS can effectively identify complex and dynamic cyber threats and solve a number of real-world cybersecurity issues. In addition, the model shows strong generalization and efficient learning over validation criteria across dynamic network environments which validates the stability and practicability of the model.

References
  1. Kim, J. et al. (2019) ‘Insider threat detection based on user behavior modeling and anomaly detection algorithms’, Applied Sciences (Switzerland) [Preprint]. Available at: https://doi.org/10.3390/app9194018.
  2. Theis, M.C. et al. (2019) ‘Common Sense Guide to Mitigating Insider Threats’, CERT Division [Preprint]. Available at: https://doi.org/10.1184/R1/12363665.v1.
  3. Kolluri, V. (2016) ‘A Pioneering Approach To Forensic Insights: Utilization AI for Cybersecurity Incident Investigations’, International Journal of Research and Analytical Reviews, 3(3).
  4. Homoliak, I. et al. (2019) ‘Insight Into Insiders and IT: A Survey of Insider Threat Taxonomies, Analysis, Modeling, and Countermeasures’, ACM Computing Surveys, 52(2), pp. 1–40. Available at: https://doi.org/10.1145/3303771.
  5. Toupas, P. et al. (2019) ‘An intrusion detection system for multi-class classification based on deep neural networks’, in Proceedings - 18th IEEE International Conference on Machine Learning and Applications, ICMLA 2019. Available at: https://doi.org/10.1109/ICMLA.2019.00206.
  6. Kolluri, V. (2018) ‘A Thorough Examination of Fortifying Cyber Defenses : AI in Real Time Driving Cyber Defence Strategies Today’, International Journal of Emerging Technologies and Innovative Research, 5(3).
  7. Kanimozhi, V. and Jacob, P. (2019) ‘Calibration Of Various Optimized Machine Learning Classifiers InNetwork Intrusion Detection System On The Realistic Cyber Dataset Cse-Cic-Ids2018 Using Cloud Computing’, International Journal of Engineering Applied Sciences and Technology, 04(06), pp. 209–213. Available at: https://doi.org/10.33564/IJEAST.2019.v04i06.036.
  8. Abideen, M.Z. ul, Saleem, S. and Ejaz, M. (2019) ‘VPN Traffic Detection in SSL-Protected Channel’, Security and Communication Networks, 2019(5), pp. 1–17. Available at: https://doi.org/10.1155/2019/7924690.
  9. Halimaa, A.A. and Sundarakantham, K. (2019) ‘Machine learning based intrusion detection system’, in Proceedings of the International Conference on Trends in Electronics and Informatics, ICOEI 2019. Available at: https://doi.org/10.1109/ICOEI.2019.8862784.
  10. Chu, A., Lai, Y. and Liu, J. (2019) ‘Industrial Control Intrusion Detection Approach Based on Multiclassification GoogLeNet-LSTM Model’, Security and Communication Networks [Preprint]. Available at: https://doi.org/10.1155/2019/6757685.
  11. Begli, M., Derakhshan, F. and Karimipour, H. (2019) ‘A Layered Intrusion Detection System for Critical Infrastructure Using Machine Learning’, in Proceedings of 2019 the 7th International Conference on Smart Energy Grid Engineering, SEGE 2019. Available at: https://doi.org/10.1109/SEGE.2019.8859950.
  12. Srivastava, A., Agarwal, A. and Kaur, G. (2019) ‘Novel Machine Learning Technique for Intrusion Detection in Recent Network-based Attacks’, in 2019 4th International Conference on Information Systems and Computer Networks, ISCON 2019. Available at: https://doi.org/10.1109/ISCON47742.2019.9036172.
  13. Kim, D.W., Hong, S.S. and Han, M.M. (2018) ‘A study on classification of insider threat using markov chain model’, KSII Transactions on Internet and Information Systems [Preprint]. Available at: https://doi.org/10.3837/tiis.2018.04.027.
  14. Farnaaz, N. and Jabbar, M.A. (2016) ‘Random Forest Modeling for Network Intrusion Detection System’, in Procedia Computer Science. Available at: https://doi.org/10.1016/j.procs.2016.06.047.
  15. Aldairi, M., Karimi, L. and Joshi, J. (2019) ‘A trust aware unsupervised learning approach for insider threat detection’, in Proceedings - 2019 IEEE 20th International Conference on Information Reuse and Integration for Data Science, IRI 2019. Available at: https://doi.org/10.1109/IRI.2019.00027.
  16. Lee, J. et al. (2019) ‘Cyber Threat Detection Based on Artificial Neural Networks Using Event Profiles’, IEEE Access [Preprint]. Available at: https://doi.org/10.1109/ACCESS.2019.2953095.
  17. Kalla, D., Smith, N., & Samaah, F. (2023). Satellite Image Processing Using Azure Databricks and Residual Neural Network. International Journal of Advanced Trends in Computer Applications, 9(2), 48-55.
  18. Kuraku, D. S., & Kalla, D. (2023). Phishing Website URL’s Detection Using NLP and Machine Learning Techniques. Journal on Artificial Intelligence-Tech Science.
  19. Varadharajan, V., Smith, N., Kalla, D., Samaah, F., Polimetla, K., & Kumar, G. R. (2024). Stock Closing Price and Trend Prediction with LSTM-RNN. Journal of Artificial Intelligence and Big Data, 4, 877.
  20. Kalla, D., Kuraku, D. S., & Samaah, F. (2021). Enhancing cyber security by predicting malwares using supervised machine learning models. International Journal of Computing and Artificial Intelligence, 2(2), 55-62.
  21. Kuraku, D. S., Kalla, D., Smith, N., & Samaah, F. (2023). Safeguarding FinTech: elevating employee cybersecurity awareness in financial sector. International Journal of Applied Information Systems (IJAIS), 12(42).
  22. Kalla, D., Smith, N., Samaah, F., & Polimetla, K. (2022). Enhancing Early Diagnosis: Machine Learning Applications in Diabetes Prediction. Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-205. DOI: doi. org/10.47363/JAICC/2022 (1), 191, 2-7.
  23. Kuraku, S., Kalla, D., Samaah, F., & Smith, N. (2023). Cultivating proactive cybersecurity culture among IT professional to combat evolving threats. International Journal of Electrical, Electronics and Computers, 8(6).
  24. Kalla, D., Smith, N., Samaah, F., & Polimetla, K. (2024). Hybrid Scalable Researcher Recommendation System Using Azure Data Lake Analytics. Journal of Data Analysis and Information Processing, 12, 76-88.
  25. Kuraku, D. S., & Kalla, D. (2023). Impact of phishing on users with different online browsing hours and spending habits. International Journal of Advanced Research in Computer and Communication Engineering, 12(10).
  26. Kalla, D., & Kuraku, S. (2023). Phishing website url’s detection using nlp and machine learning techniques. Journal of Artificial Intelligence, 5, 145.
  27. Kuraku, D. S., Kalla, D., & Samaah, F. (2022). Navigating the link between internet user attitudes and cybersecurity awareness in the era of phishing challenges. International Advanced Research Journal in Science, Engineering and Technology, 9(12).
  28. Kuraku, D. S., Kalla, D., Smith, N., & Samaah, F. (2023). Exploring How User Behavior Shapes Cybersecurity Awareness in the Face of Phishing Attacks. International Journal of Computer Trends and Technology.
  29. Sreeramulu, M. D., Mohammed, A. S., Kalla, D., Boddapati, N., & Natarajan, Y. (2024, September). AI-driven Dynamic Workload Balancing for Real-time Applications on Cloud Infrastructure. In 2024 7th International Conference on Contemporary Computing and Informatics (IC3I) (Vol. 7, pp. 1660-1665). IEEE.
  30. Kalla, D., Mohammed, A. S., Boddapati, V. N., Jiwani, N., & Kiruthiga, T. (2024, November). Investigating the Impact of Heuristic Algorithms on Cyberthreat Detection. In 2024 2nd International Conference on Advances in Computation, Communication and Information Technology (ICAICCIT) (Vol. 1, pp. 450-455). IEEE.
  31. Chandrasekaran, A., & Kalla, D. (2023). Heart disease prediction using chi-square test and linear regression. Computer Science & Information Technology, 13, 135-146.
  32. Chinta, P. C. R., Katnapally, N., Ja, K., Bodepudi, V., Babu, S., & Boppana, M. S. (2022). Exploring the role of neural networks in big data-driven ERP systems for proactive cybersecurity management. Kurdish Studies.
  33. Routhu, K., Bodepudi, V., Jha, K. M., & Chinta, P. C. R. (2020). A Deep Learning Architectures for Enhancing Cyber Security Protocols in Big Data Integrated ERP Systems. Available at SSRN 5102662.
  34. Moore, C. (2023). AI-powered big data and ERP systems for autonomous detection of cybersecurity vulnerabilities. Nanotechnology Perceptions, 19, 46-64.
  35. Bodepudi, V., & Chinta, P. C. R. (2024). Enhancing Financial Predictions Based on Bitcoin Prices using Big Data and Deep Learning Approach. Available at SSRN 5112132.
  36. Chinta, P. C. R. (2023). The Art of Business Analysis in Information Management Projects: Best Practices and Insights. DOI, 10.
  37. Boppana, S. B., Moore, C. S., Bodepudi, V., Jha, K. M., Maka, S. R., & Sadaram, G. AI And ML Applications In Big Data Analytics: Transforming ERP Security Models For Modern Enterprises.
  38. Katnapally, N., Chinta, P. C. R., Routhu, K. K., Velaga, V., Bodepudi, V., & Karaka, L. M. (2021). Leveraging Big Data Analytics and Machine Learning Techniques for Sentiment Analysis of Amazon Product Reviews in Business Insights. American Journal of Computing and Engineering, 4(2), 35-51.
  39. Chinta, P. C. R., Moore, C. S., Karaka, L. M., Sakuru, M., Bodepudi, V., & Maka, S. R. (2025). Building an Intelligent Phishing Email Detection System Using Machine Learning and Feature Engineering. European Journal of Applied Science, Engineering and Technology, 3(2), 41-54.
  40. Moore, C. (2024). Enhancing Network Security With Artificial Intelligence Based Traffic Anomaly Detection In Big Data Systems. Available at SSRN 5103209.
  41. Chinta, P. C. R., Moore, C. S., Karaka, L. M., Sakuru, M., & Bodepudi, V. (2025). Predictive Analytics for Disease Diagnosis: A Study on Healthcare Data with Machine Learning Algorithms and Big Data. J Cancer Sci, 10(1), 1.
  42. KishanKumar Routhu, A. D. P. Risk Management in Enterprise Merger and Acquisition (M&A): A Review of Approaches and Best Practices.
  43. Bodepudi, V. (2023). Understanding the Fundamentals of Digital Transformation in Financial Services: Drivers and Strategic Insights. Journal of Artificial Intelligence and Big Data, 3(1), 10-31586.
  44. Chinta, P. C. R. (2022). Enhancing Supply Chain Efficiency and Performance Through ERP Optimisation Strategies. Journal of Artificial Intelligence & Cloud Computing, 1(4), 10-47363.
  45. Krishna Madhav, J., Varun, B., Niharika, K., Srinivasa Rao, M., & Laxmana Murthy, K. (2023). Optimising Sales Forecasts in ERP Systems Using Machine Learning and Predictive Analytics. J Contemp Edu Theo Artific Intel: JCETAI-104.
  46. Jha, K. M., Velaga, V., Routhu, K., Sadaram, G., Boppana, S. B., & Katnapally, N. (2025). Transforming Supply Chain Performance Based on Electronic Data Interchange (EDI) Integration: A Detailed Analysis. European Journal of Applied Science, Engineering and Technology, 3(2), 25-40.
  47. Sadaram, G., Sakuru, M., Karaka, L. M., Reddy, M. S., Bodepudi, V., Boppana, S. B., & Maka, S. R. (2022). Internet of Things (IoT) Cybersecurity Enhancement through Artificial Intelligence: A Study on Intrusion Detection Systems. Universal Library of Engineering Technology, (2022).
  48. Maka, S. R. (2023). Understanding the Fundamentals of Digital Transformation in Financial Services: Drivers and Strategic Insights. Available at SSRN 5116707.
Index Terms

Computer Science
Information Sciences

Keywords

Threat Detection NSL-KDD Dataset Artificial Neural Network PCA technique Cybersecurity Machine Learning