CFP last date

by
Abha Tenguria,
Rinku Verma

International Journal of Applied Information Systems |

Foundation of Computer Science (FCS), NY, USA |

Volume 8 - Number 4 |

Year of Publication: 2015 |

Authors: Abha Tenguria, Rinku Verma |

10.5120/ijais15-451303 |

Abha Tenguria, Rinku Verma . 3-Total Super Sum Cordial Labeling for Union of Some Graphs. International Journal of Applied Information Systems. 8, 4 ( February 2015), 25-30. DOI=10.5120/ijais15-451303

@article{
10.5120/ijais15-451303,

author = {
Abha Tenguria,
Rinku Verma
},

title = { 3-Total Super Sum Cordial Labeling for Union of Some Graphs },

journal = {
International Journal of Applied Information Systems
},

issue_date = { February 2015 },

volume = { 8 },

number = { 4 },

month = { February },

year = { 2015 },

issn = { 2249-0868 },

pages = {
25-30
},

numpages = {9},

url = {
https://www.ijais.org/archives/volume8/number4/721-1303/
},

doi = { 10.5120/ijais15-451303 },

publisher = {Foundation of Computer Science (FCS), NY, USA},

address = {New York, USA}

}

%0 Journal Article

%1 2023-07-05T18:58:57.079801+05:30

%A Abha Tenguria

%A Rinku Verma

%T 3-Total Super Sum Cordial Labeling for Union of Some Graphs

%J International Journal of Applied Information Systems

%@ 2249-0868

%V 8

%N 4

%P 25-30

%D 2015

%I Foundation of Computer Science (FCS), NY, USA

In this paper we investigate 3-total super sum cordial labeling for union of some graphs. Suppose G=(V(G),E(G) ) be a graph with vertex set V(G) and edge set E(G). A vertex labeling f:V(G)→{0,1,2}. For each edge uv assign the label(f(u)+f(v))mod 3. The map f is called a 3-total super sum cordial labeling if |f(i)-f(j)|≤1 for i,j ε {0,1,2} where f(x) denotes the total number of vertices and edges labeled with x={0,1,2} and for each edge uv,|f(u)-f(v)|≤1 . Any graph which satisfies 3-total super sum cordial labeling is called 3-total super sum cordial graphs. Here we prove some graphs like Pm∪Pn,Cm∪Cn,k1,m∪k1,n are 3-total super sum cordial graphs.

- Cahit, I. "Cordial graphs: A weaker version of graceful and harmonious graphs" Ars combinatorial 23 201-207 1987.
- Gallian, J. A. , "A dynamic survey of graph labeling" the Electronic Journal of Combinatorics, 17(2010) DS6.
- Harrary Frank, Graph Theory, Narosa Publishing House (2001).
- Pethanachi Selvam S. and Lathamaheshwari G. , "k sum cordial labelingfor some graphs", IJMA-4(3), March-2013.
- Shiama J. , "Sum cordial labeling for some graphs", IJMA-3(a), sept-2012.
- Tenguria Abha and Verma Rinku, "3-Total super sum cordial labeling for some graphs" accepted for publication IJMA, 5 (12) Dec-2014.
- Ponraj R. , Sivakumar M. & Sundaram M. , "3-Total product cordial labeling of union of some graphs", Journal of Indian Acad. Math. 34(2) 2012 511-530.
- Vaidya S. K. , Ghodasara G. V. , Srivastav Sweta & Kaneria V. J. , Some new cordial graphs, Int. J. of Math & Math. Sci. 4(2) 2008 81-92.
- Bloom G. S. & Golomb S. W. , "Application of numbered undirected graphs", Proceedings of IEEE, 165(4) 1977 562-570.
- David M. Burton, Elementary Number Theory, Second edition, Wm. C. Brown Company Publisher, 1980.
- Shee S. C. , Ho Y. S. , "The cordiality of path union of n copies of a graph", Discrete Math, 151(1996) 221-229.
- Vaidya S. K. , Ghodasara G. V. , Srivastav S. & Kaneria V. J. ," Cordial labeling for two cycle related graphs", The mathematics student, 76(2007) 237-246.
- Vaidya S. K. , Ghodasara G. V. , Srivastav Sweta & Kaneria V. J. , "Cordial and 3-equitable labeling of star of a cycle ", Math. today, 24(2008) 54-64.
- Vaidya S. K. , Ghodasara G. V. , Srivastav Sweta & Kaneria V. J. , "Cordial labeling for cycle with one chord & its related graphs", Indian J. Math Science, 49(2008) 146-146.
- Ghodasara G. V. & Rokad A. H. , "Cordial labeling of k_(n,n) related graphs", International Journal of Science and Research (IJSR), India Online 2(5), May 2013.
- Ponraj R. , Siva Kumar M. , Sundaram M. , "k-product cordial labeling of graphs", Int. J. Contemp. Math. Sciences, 7(2012) 15 733-742.
- Sundaram M. , Ponraj R. & Somasundaram S. ," Product cordial labeling of graphs", Bull. Pure and Applied Sciences (Mathematics and Statistics) 23E 155-163 (2004).
- Sundaram M. , Ponraj R. & Somasundaram S. , "Total product cordial labeling of graphs", Bulletin of pure and applied sciences, 25E 199-203.
- Ponraj R. , Sivakumar M. & Sundaram M. , "On 3-total product cordial graphs", International Mathematics forum, 7(31) 1537-1546.

Computer Science

Information Sciences