CFP last date
28 November 2025
Call for Paper
December Edition
IJAIS solicits high quality original research papers for the upcoming December edition of the journal. The last date of research paper submission is 28 November 2025

Submit your paper
Know more
Random Articles
Reseach Article

A Machine Learning Approach to Predicting High Blood Pressure using Predictive Modeling on Local and Global Datasets to Enhance Patient Safety

by Tolulope Esther Alabede, Japheth Richard Bunakiye, Michael Doorumun Ishima, Alimot Olaide Abdulazeez
International Journal of Applied Information Systems
Foundation of Computer Science (FCS), NY, USA
Volume 13 - Number 1
Year of Publication: 2025
Authors: Tolulope Esther Alabede, Japheth Richard Bunakiye, Michael Doorumun Ishima, Alimot Olaide Abdulazeez
10.5120/ijais2025452036

Tolulope Esther Alabede, Japheth Richard Bunakiye, Michael Doorumun Ishima, Alimot Olaide Abdulazeez . A Machine Learning Approach to Predicting High Blood Pressure using Predictive Modeling on Local and Global Datasets to Enhance Patient Safety. International Journal of Applied Information Systems. 13, 1 ( Nov 2025), 72-85. DOI=10.5120/ijais2025452036

@article{ 10.5120/ijais2025452036,
author = { Tolulope Esther Alabede, Japheth Richard Bunakiye, Michael Doorumun Ishima, Alimot Olaide Abdulazeez },
title = { A Machine Learning Approach to Predicting High Blood Pressure using Predictive Modeling on Local and Global Datasets to Enhance Patient Safety },
journal = { International Journal of Applied Information Systems },
issue_date = { Nov 2025 },
volume = { 13 },
number = { 1 },
month = { Nov },
year = { 2025 },
issn = { 2249-0868 },
pages = { 72-85 },
numpages = {9},
url = { https://www.ijais.org/archives/volume13/number1/a-machine-learning-approach-to-predicting-high-blood-pressure-using-predictive-modeling-on-local-and-global-datasets-to-enhance-patient-safety/ },
doi = { 10.5120/ijais2025452036 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2025-11-25T02:03:22.557135+05:30
%A Tolulope Esther Alabede
%A Japheth Richard Bunakiye
%A Michael Doorumun Ishima
%A Alimot Olaide Abdulazeez
%T A Machine Learning Approach to Predicting High Blood Pressure using Predictive Modeling on Local and Global Datasets to Enhance Patient Safety
%J International Journal of Applied Information Systems
%@ 2249-0868
%V 13
%N 1
%P 72-85
%D 2025
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Hypertension remains a major global public health burden, contributing to cardiovascular disease and premature deaths. Despite advances in medical care, delayed diagnosis particularly in developing countries like Nigeria continues to undermine effective prevention and intervention strategies. Traditional approaches rely on periodic measurements, which often fail to capture early risk indicators/patient-specific factors. With the growing availability of large-scale clinical data, machine learning provides an opportunity to enhance predictive modeling for early detection. This study proposed a machine learning framework for predicting hypertension using both local (426 patient records from Federal Medical Centre, Yenagoa) and global datasets (174,982 instances from Kaggle). The dataset was preprocessed using python libraries. Four ML algorithms: Logistic Regression, Random Forest, K-Nearest Neighbor, and XGBoost were trained separately on different feature dimensions with evaluation metrics including accuracy, sensitivity, specificity, F1-score, and AUC-ROC. Results indicated that RF achieved ~99.95% accuracy on the global dataset, while XGB on local data attained ~98.84% with superior sensitivity in distinguishing high-risk categories. A prototype web app built from the best-performing model was successfully tested, showing strong clinical potential. The study highlights that using local and global datasets improved generalization, while ensemble models enhanced predictive reliability for early detection to improve patient safety.

References
  1. WHO (2023). Hypertension. World Health Organization (WHO). https://www.who.int/news-room/fact-sheets/detail/hypertension
  2. Vidal-Petiot, E. (2022). Thresholds for hypertension definition, treatment initiation, and treatment targets: Recent Guidelines at a glance. Circulation, 146(11), 805–807. https://doi.org/10.1161/circulationaha.121.055177
  3. World Heart Federation. (2024). World Heart Report 2023: Full Report - World Heart Federation. https://world-heart-federation.org/resource/world-heart-report-2023/
  4. Montagna, S., Pengo, M. F., Ferretti, S., Borghi, C., Ferri, C., Grassi, G., Muiesan, M. L., & Parati, G. (2022). Machine Learning in Hypertension Detection: A study on World Hypertension Day data. Journal of Medical Systems, 47(1). https://doi.org/10.1007/s10916-022-01900-5
  5. Haruna, I.S., Abubakar, S.S., Ibrahim, A., Osi, A.A., & Abubakar, U. (2025). Application of Machine Learning Techniques for Predicting Hypertension Status and Indicators. UMYU Scientifica, 4(2), 226–233. https://doi.org/10.56919/usci.2542.023
  6. Mondal, A. (2024). Predictive Modeling for Hypertension Detection: a Machine Learning approach. IJNRD.org. https://ijnrd.org/viewpaperforall.php?paper=IJNRD2405537
  7. Obafemi, A. S. (2022). A predictive model for predicting blood pressure levels using machine learning techniques. https://norma.ncirl.ie/6241
  8. Effati, S., Kamarzardi-Torghabe, A., Azizi-Froutaghe, F., Atighi, I., & Ghiasi-Hafez, S. (2024). Web application using machine learning to predict cardiovascular disease and hypertension in mine workers. Scientific Reports, 14, 31662. https://doi.org/10.1038/s41598-024-80919-9
  9. Kurniawan, R., Utomo, B., Siregar, K. N., Ramli, K., Besral, B., Suhatril, R. J., & Pratiwi, O. A. (2023). Hypertension prediction using machine learning algorithm among Indonesian adults. IAES International Journal of Artificial Intelligence (IJ-AI), 12(2), 776. https://doi.org/10.11591/ijai.v12.i2.pp776-784
  10. Garg, A., Sharma, B., & Khan, R. (2021). Heart disease prediction using machine learning techniques. IOP Conference Series. Materials Science and Engineering, 1022(1), 012046. https://doi.org/10.1088/1757-899x/1022/1/012046
  11. Islam, M., Alam, J., Maniruzzaman, M., Ahmed, N.A.M.F., Ali, S., Rahman, J., & Roy, D.C. (2023). Predicting the risk of hypertension using machine learning algorithms: A cross-sectional study in Ethiopia. PLoS ONE, 18(8), e0289613. https://doi.org/10.1371/journal.pone.0289613
  12. Jeong, Y. W., Jung, Y., Jeong, H., Huh, J. H., Sung, K.-C., Shin, J.-H., Kim, H. C., Kim, J. Y., & Kang, D. R. (2022). Prediction Model for Hypertension and Diabetes Mellitus Using Korean Public Health Examination Data (2002–2017). Diagnostics, 12, 1967. https://doi.org/10.3390/diagnostics12081967
  13. Sandhiya, R., Tharun, D., Subhika, S., Suriya, K. K., Sruthi, K., & Madhumitha, S. (2024). Enhanced Hypertension Disease Prediction using Machine Learning. Proceedings of the 3rd International Conference on Optimization Techniques in the Field of Engineering (ICOFE-2024). SSRN: https://ssrn.com/abstract=5091273 or http://dx.doi.org/10.2139/ssrn.5091273
  14. Das, S., Roy, S. K., Chakraborty, S., Dey, P., & Ghosh, D. (2024). Prediction of blood pressure using machine learning. International Journal of Intelligent Systems and Applications in Engineering, 12(22s), 579–586.
  15. Du, J., Chang, X., Ye, C., Zeng, Y., Yang, S., Wu, S., & Li, L. (2023). Developing a hypertension visualization risk prediction system utilizing machine learning and health check-up data. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-46281-y
  16. Hwang, S. H., Lee, H., Lee, J. H., Lee, M., Koyanagi, A., Smith, L., Rhee, S. Y., Yon, D. K., & Lee, J. (2024). Machine Learning–Based Prediction for Incident Hypertension based on regular health checkup data: Derivation and validation in 2 independent nationwide cohorts in South Korea and Japan. Journal of Medical Internet Research, 26, e52794. https://doi.org/10.2196/52794
  17. Wanriko, S., Hnoohom, N., Wongpatikaseree, K., Jitpattanakul, A., & Musigavong, O. (2021). Risk Assessment of Pregnancy-induced Hypertension Using a Machine Learning Approach. 2021 Joint 6th International Conference on Digital Arts, Media and Technology with 4th ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunication
  18. Chang, W., Liu, Y., Xiao, Y., Yuan, X., Xu, X., Zhang, S., & Zhou, S. (2019). A Machine-Learning-Based prediction method for hypertension outcomes based on medical data. Diagnostics, 9(4), 178. https://doi.org/10.3390/diagnostics9040178
  19. Ishima, M.D., & Ikirigo, S.A. (2024). Detection and Classification of Malicious Websites Using Natural Language Processing (NLP) and Machine Learning (ML) Techniques. International Journal of Scientific Research in Science & Engineering Technology (IJSRSET), 11(6), 206–221. https://doi.org/10.32628/IJSRSET2411449
  20. Hasannejad, A. (2022). Data preprocessing in machine learning. Kaggle. https://www.kaggle.com/code/alirezahasannejad/data-preprocessing-in-machine-learning
  21. Ippolito, P. P. (2019). Feature engineering techniques. https://ppiconsulting.dev/blog/blog30/
  22. Jurafsky, D., & Martin, J. H. (2025). Speech and Language Processing. Draft of January 12, 2025. https://web.stanford.edu/~jurafsky/slp3/5.pdf
  23. Banoula, M. (2025). An Introduction to logistic regression in Machine learning. Simplilearn.com. https://www.simplilearn.com/tutorials/machine-learning-tutorial/logistic-regression-in-python
  24. Sakshi, A. (2023). Machine Learning algorithms, perspectives, and real-world application: Empirical evidence from United States trade data. Indian Institute of Foreign Trade. MPRA Paper No. 116579. https://mpra.ub.uni-muenchen.de/116579/
  25. Kavlakoglu, E., & Russi, E. (2025, May 19). XGBoost. IBM. https://www.ibm.com/think/topics/xgboost
  26. Tyagi, A. (2025). What is XGBoost Algorithm? Analytics Vidhya. https://www.analyticsvidhya.com/blog/2018/09/an-end-to-end-guide-to-understand-the-math-behind-xgboost/
  27. Eldem, A. (2025). A new hybrid learning model for early diagnosis of hypertension using IoMT technologies. Ain Shams Engineering Journal (ASEJ). https://doi.org/10.1016/j.asej.2025.103490
  28. Srivastava, T. (2025). 12 Important model evaluation Metrics for Machine Learning Everyone should know (Updated 2025). Analytics Vidhya. https://www.analyticsvidhya.com/blog/2019/08/11-important-model-evaluation-error-metrics/
  29. Schlosser, T., Friedrich M., Meyer, T., and Kowerko, D (2024). A Consolidated Overview of Evaluation and Performance Metrics for Machine Learning and Computer Vision. Junior Professorship of Media Computing, Chemnitz University of Technology, 09107 Chemnitz, Germany. https://www.researchgate.net/publication/374558675_A_Consolidated_Overview_of_Evaluation_and_Performance_Metrics_for_Machine_Learning_and_Computer_Vision
  30. Swaminathan, Sathyanarayanan & Tantri, B Roopashri. (2024). Confusion Matrix-Based Performance Evaluation Metrics. African Journal of Biomedical Research. 27. 4023-4031. 10.53555/AJBR.v27i4S.4345.
  31. Narkhede, S. (2018). Understanding AUC - ROC Curve. https://medium.com/data-science/understanding-auc-roc-curve-68b2303cc9c5
Index Terms

Computer Science
Information Sciences

Keywords

Hypertension Blood Pressure Machine Learning Predictive Modeling Systolic BP Diastolic BP