CFP last date
29 September 2025
Call for Paper
October Edition
IJAIS solicits high quality original research papers for the upcoming October edition of the journal. The last date of research paper submission is 29 September 2025

Submit your paper
Know more
Random Articles
Reseach Article

Paediatrics Respiratory Diseases Diagnostic and Prediction System using Deep Learning Model

by Oluwajana Kehinde Joseph, Adegun Iyanu Pelumi, Oluwadare Samuel Adebayo
International Journal of Applied Information Systems
Foundation of Computer Science (FCS), NY, USA
Volume 13 - Number 1
Year of Publication: 2025
Authors: Oluwajana Kehinde Joseph, Adegun Iyanu Pelumi, Oluwadare Samuel Adebayo
10.5120/ijais2025452011

Oluwajana Kehinde Joseph, Adegun Iyanu Pelumi, Oluwadare Samuel Adebayo . Paediatrics Respiratory Diseases Diagnostic and Prediction System using Deep Learning Model. International Journal of Applied Information Systems. 13, 1 ( Aug 2025), 18-27. DOI=10.5120/ijais2025452011

@article{ 10.5120/ijais2025452011,
author = { Oluwajana Kehinde Joseph, Adegun Iyanu Pelumi, Oluwadare Samuel Adebayo },
title = { Paediatrics Respiratory Diseases Diagnostic and Prediction System using Deep Learning Model },
journal = { International Journal of Applied Information Systems },
issue_date = { Aug 2025 },
volume = { 13 },
number = { 1 },
month = { Aug },
year = { 2025 },
issn = { 2249-0868 },
pages = { 18-27 },
numpages = {9},
url = { https://www.ijais.org/archives/volume13/number1/paediatrics-respiratory-diseases-diagnostic-and-prediction-system-using-deep-learning-model/ },
doi = { 10.5120/ijais2025452011 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2025-08-29T00:23:15.265510+05:30
%A Oluwajana Kehinde Joseph
%A Adegun Iyanu Pelumi
%A Oluwadare Samuel Adebayo
%T Paediatrics Respiratory Diseases Diagnostic and Prediction System using Deep Learning Model
%J International Journal of Applied Information Systems
%@ 2249-0868
%V 13
%N 1
%P 18-27
%D 2025
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The study presents a deep learning-based diagnostic and prediction method for paediatric respiratory illnesses that have a significant global impact on children's health, notably upper respiratory tract infections (URTI), chronic obstructive pulmonary disease (COPD), bronchiolitis, and pneumonia. The proposed framework combines Gated Recurrent Units (GRU) to describe sequential patterns in Mel-Frequency Cepstral Coefficients (MFCCs) and Convolutional Neural Networks (CNN) to capture local temporal features through the analysis of respiratory sound recordings. The model, which was trained on a labelled dataset, performed 84% of the time and showed good diagnostic and prediction abilities, particularly for cases of bronchiolitis (92% precision and recall) and healthy (100% precision and recall). The model's potential as an accurate and easily accessible tool for diagnosing and predicting paediatric respiratory diseases is proven by the results, despite a few misclassifications.

References
  1. Zar, H. J., & Ferkol, T. (2014). The global burden of respiratory disease-Impact on child health. Pediatric Pulmonology, 49(5), 430–434. https://doi.org/10.1002/ppul.23030
  2. Ahsan, M. M., Luna, S. A., & Siddique, Z. (2022). Machine-Learning-Based Disease Diagnosis: A Comprehensive Review. Healthcare, 10(3), 541. https://doi.org/10.3390/healthcare10030541
  3. Xue, L., Liu, C., Xue, W., Xue, R., Liu, P., & Wang, F. (2022, January 1). The role of nurses in the management of respiratory disorders in children. PubMed. https://pubmed.ncbi.nlm.nih.gov/34653020/
  4. Rakel, R. E. (2023, September 13). Diagnosis | Definition, Types, Examples, & Facts. Encyclopedia Britannica. https://www.britannica.com/science/diagnosis
  5. Barakat, N., Awad, M., & Abu‐Nabah, B. A. (2023). A machine learning approach on chest X-rays for pediatric pneumonia detection. Digital Health, 9, 205520762311800. https://doi.org/10.1177/20552076231180008
  6. Wang, X. (2019, July 25). Deep learning models to predict pediatric asthma emergency department visits. arXiv.org. https://arxiv.org/abs/1907.11195
  7. Chen, K. C., Yu, H., Chen, W. S., Lin, W. C., Lee, Y. C., Chen, H., Jiang, J. H., Su, T., Tsai, C. K., Tsai, T. A., Tsai, C. M., & Lu, H. H. S. (2020). Diagnosis of common pulmonary diseases in children by X-ray images and deep learning. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-73831-5
  8. Chen, Y., Roberts, C., Ou, W., Petigara, T., Goldmacher, G. V., Fancourt, N., & Knoll, M. D. (2021). Deep learning for classification of pediatric chest radiographs by WHO’s standardized methodology. PLOS ONE, 16(6), e0253239. https://doi.org/10.1371/journal.pone.0253239
  9. Kang, C. M., Shanmugam, S. A., & Nugroho, H. A. (2022). Respiratory Anomalies and Diseases Detection with Deep Learning. In Springer eBooks (pp. 439–448). https://doi.org/10.1007/978-981-16-8129-5_68
  10. Kim, B. J., Kim, B. S., Mun, J. H., Lim, C., & Kim, K. H. (2022). An accurate deep learning model for wheezing in children using real world data. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-25953-1
  11. Mahmoudi, R., Benameur, N., Mabrouk, R., Mohammed, M. A., Garcia-Zapirain, B., & Bedoui, M. H. (2022). A Deep Learning-Based Diagnosis system for COVID-19 detection and pneumonia screening using CT imaging. Applied Sciences, 12(10), 4825. https://doi.org/10.3390/app12104825
  12. Podder, P., Das, S. R., Mondal, M. R. H., Bharati, S., Maliha, A., Hasan, J., & Piltan, F. (2023). LDDNET: A deep learning framework for the diagnosis of infectious lung diseases. Sensors, 23(1), 480. https://doi.org/10.3390/s23010480
  13. Priyadarsini, M. J. P., Kotecha, K., Rajini, G. K., Hariharan, K., Raj, K. U., Ram, K. B., Indragandhi, V., Subramaniyaswamy, V., & Pandya, S. (2023). Lung diseases detection using various deep learning algorithms. Journal of Healthcare Engineering, 2023, 1–13. https://doi.org/10.1155/2023/3563696
  14. Kwak, G. H. (2019, September 1). DeepHealth: Review and challenges of artificial intelligence in health informatics. arXiv.org. https://arxiv.org/abs/1909.00384 6
  15. Davenport, T. H., & Kalakota, R. (2019). The potential for artificial intelligence in healthcare. Future Healthcare Journal, 6(2), 94–98. https://doi.org/10.7861/futurehosp.6-2-94
  16. Kundu, R., Das, R., Geem, Z. W., Han, G., & Sarkar, R. (2021). Pneumonia detection in chest X-ray images using an ensemble of deep learning models. PLOS ONE, 16(9), e0256630. https://doi.org/10.1371/journal.pone.0256630
  17. Tran, T. T., Pham, H. H., Nguyễn, T. V., Le, T. T., Nguyen, H., & Nguyen, H. Q. (2021). Learning to automatically diagnose multiple diseases in pediatric chest radiographs using deep convolutional neural networks. medRxiv (Cold Spring Harbor Laboratory). https://doi.org/10.1101/2021.08.12.21261954
  18. Li, L., Alimu, A., Luan, Q., Yang, B., Yilamujiang, S., Gong, H., Zulipikaer, A., Xu, J., Zhong, X., Ren, J., & Zou, X. (2022). Prediction and diagnosis of respiratory disease by combining convolutional neural network and bi-directional Long Short-Term memory methods. Frontiers in Public Health, 10. https://doi.org/10.3389/fpubh.2022.881234
  19. Newman‐Toker, D. E., Schaffer, A. C., Yu-Moe, C. W., Nassery, N., Tehrani, A. S. S., Clemens, G., Wang, Z., Zhu, Y., Fanai, M., & Siegal, D. (2019). Serious misdiagnosis-related harms in malpractice claims: The “Big Three” – vascular events, infections, and cancers. Diagnosis, 6(3), 227–240. https://doi.org/10.1515/dx-2019-0019
  20. Pham, L. (2020, January 21). Robust Deep Learning Framework For Predicting Respiratory Anomalies and Diseases. arXiv.org. https://arxiv.org/abs/2002.03894
  21. Sharan, R. V., & Rahimi-Ardabili, H. (2023). Detecting acute respiratory diseases in the pediatric population using cough sound features and machine learning: A systematic review. International Journal of Medical Informatics, 176, 105093. https://doi.org/10.1016/j.ijmedinf.2023.105093
  22. Srinath, S., Jacob, P., Sharma, E., & Gautam, A. (2019). Clinical practice guidelines for assessment of children and adolescents. Indian Journal of Psychiatry, 61(8), 158. https://doi.org/10.4103/psychiatry.indianjpsychiatry_580_18
  23. Yu, G., Yu, Z., Shi, Y., Wang, Y., Liu, X., Li, Z., Zhao, Y., Sun, F., Yu, Y., & Shu, Q. (2021). Identification of pediatric respiratory diseases using a fine-grained diagnosis system. Journal of Biomedical Informatics, 117, 103754. https://doi.org/10.1016/j.jbi.2021.103754
Index Terms

Computer Science
Information Sciences

Keywords

Convolutional Neural Networks (CNN) Gated Recurrent Units (GRU) COPD Healthy Bronchiolitis Pneumonia